
Autoencoder for Synthetic to Real Generalization:
From Simple to More Complex Scenes

Supplementary Material

S1. DATASET DETAILS

If not specified otherwise, all images have been centre
cropped and resized to 128 pixels.

A. MPI3D

We used the synthetic realistic and toy images as well as
the real images, but we restricted the dataset to use only large
objects, since even for humans the small objects cannot always
be distinguished reliably. The dataset can be downloaded from
Github.

B. SVIRO

We only used the grayscale training images from the SVIRO
dataset. We considered everyday objects as background and
removed all images containing empty child and infant seats.
For the classification evaluation we used all the images from
all the different vehicles, but we used training images only.
Occupancy classification is performed on the entire image such
that all three seats need to be classified simultaneously. Since
four classes are available per seat (empty, infant seat, child
seat and adult) this results in a total of 43 = 64 classes. The
dataset can be downloaded from our website.

C. SVIRO-Illumination

For the classification evaluation we used all the training
and test images from all the different vehicles. We used all
the variations per scenes, i.e. not just a single variation per
illumination variation. The dataset can be downloaded from
our website.

D. Our newly released dataset

We created 2938 training and 2981 test sceneries where
each scenery is rendered with 10 different backgrounds out
of a pool of 450 backgrounds. The background and the
corresponding illumination conditions were defined using high
dynamic range images (HDRI). The latter were downloaded
from https://hdrihaven.com/. Human models, child seats and
infant seats were randomly placed as if they were located
inside a vehicle, but no vehicle is visible. There are four
possible classes for each seat position (empty, infant seat,
child seat and adult) leading to a total of 43 = 64 classes
for the whole image. We created randomly 172 adults using

Fig. S1. Examples of sceneries with different backgrounds from the newly
generated dataset.

http://www.makehumancommunity.org/ and we used 6 child
seats and 7 infant seats which were textured using randomly
one out of five textures. Since the dataset is synthetic, there
are no consent and privacy concerns. The dataset can be
downloaded from our website. Examples are visualized in Fig.
S1. We noticed that a larger number of different human models
increases the transferability to real images.

E. TICaM

We used all training and test images and also flipped
the images for the classification evaluation. This was done,
because otherwise the class variability is quite low and there
is a strong bias towards people sitting on the right driver seat.
Moreover, the steering wheel would always be placed at the
same right position. We also needed to perform some pre-
processing to make the real TICaM images compatible with
the synthetic images. First, we adapted the labels: we extracted
the labels for the left and right seat from the filename. The file
name is split at the character after which the third (right seat)
and ninth (left seat) part is responsible for the class definition.
If the latter was a 0 or contained an o, we kept it as a 0.
If it contained a p, it was changed into a 3. We changed the
value to 2 if it was one of the child seats s03, s13, s04,
s14 or the variation g00 for the child seats s01, s11, s02,
s12. In all other cases, it was transformed to a 1, i.e. for the
child seats s05, s15, s06, s16 and variations g01 g11 g10 for

https://github.com/rr-learning/disentanglement_dataset
https://sviro.kl.dfki.de/download/
https://sviro.kl.dfki.de/sviro-illumination-download/
https://hdrihaven.com/
http://www.makehumancommunity.org/
https://sviro.kl.dfki.de/sviro-nocar-download/


s01, s11, s02, s12. Second, the illumination of the images
was normalized using a histogram equalization. After that the
images were cropped at height position 120 with height 300
and left position 106 with width 300. Finally, the images were
resized to 128 pixels. The dataset can be downloaded from
their website.

S2. TRAINING DETAILS

All our experiments were conducted using PyTorch 1.8. Pre-
defined and models pre-trained on Imagenet were taken from
torchvision 0.9.0. The code implementation can be found on
Github.

We used the same hyperparameters for all training ex-
periments and for all autoencoder and classification models
respectively. We used the AdamW optimizer with a learning
rate of 1e − 4 and weight decay of 1e − 5. We used a batch
size of 64 and the only augmentation performed was a random
horizontal flip. All models were trained for 100 epochs on
MPI3D and 250 epochs for the other datasets.

Both the extractor autoencoder and the classification models
used the same layer for extracting the features from the pre-
trained models. In both cases and for all pre-trained models
we used layer level −3 in our implementation: those features
were used to fine-tune the rest of the pre-trained classification
model or to train from scratch our added autoencoder layers.
In all cases, we interpolated the input images to be of size 224
and copied the single grayscale image channel twice along the
channel dimension.

For the autoencoder training, we used the structural simi-
larity index measure (SSIM) [1] or the binary cross entropy
(BCE) to measure the error between reconstruction and target
image. We used PyTorch MS-SSIM [2] to compute the SSIM.
In Eq. 5 we chose α = 1 and β = 1. We used a latent space
dimension of 64 for all models trained on the vehicle interior
and a latent space dimension of 10 for the MPI3D dataset.
Further, we used the ReLU activation function. In case of a
triplet loss, we used the swap parameter of Pytorch to make the
negative mining more challenging [3]. As a positive sample,
we selected an image of a different scenery of the same class,
i.e. the same objects are at the same seat position. For the
negative sample we selected a scenery which differs in a single
seat position and we did not allow sceneries with empty seats
only. In case the partially impossible reconstruction loss was
used, the target images for the positive and negative samples
are chosen to be partially impossible as well.

A. Model details
The autoencoder model architecture details are provided in

Table S1, S3 and S4. Regarding the pre-trained models, we
used the output of the following layers to retrieve the extracted
features. The notations is according to the torchvision model
definitions:
VGG-11
(16): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(17): ReLU(inplace=True)

Resnet-50
(5): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)

)

Densenet-121
(denselayer24): _DenseLayer(
(norm1): BatchNorm2d(992, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(992, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

)

TABLE S1
MODEL ARCHITECTURE FOR AE, VAE AND β-VAE ON MPI3D

Encoder Decoder

Input: 3 x 64 x 64 Input: 10

Conv, 4x4, 32, padding 1, stride 2 FC, 256, bias True
ReLU ReLU

Conv, 4x4, 32, padding 1, stride 2 FC, 1024, bias True
ReLU ReLU

Conv, 4x4, 64, padding 1, stride 2 ConvTranspose, 4x4, 64, padding 1, stride 2
ReLU ReLU

Conv, 4x4, 64, padding 1, stride 2 ConvTranspose, 4x4, 32, padding 1, stride 2
ReLU ReLU

FC, 256, bias True ConvTranspose, 4x4, 32, padding 1, stride 2
ReLU ReLU

FC, 10, bias True (twice in case of VAE) ConvTranspose, 4x4, 3, padding 1, stride 2
Sigmoid

TABLE S2
MODEL ARCHITECTURE FOR FACTORVAE ON MPI3D. THE MODEL IS
EXACTLY THE SAME AS THE VAE MODEL AND USES THE FOLLOWING

DISCRIMINATOR.

Discriminator

Input: 10

FC, 1000, bias True
LeakyReLU(0.2)

FC, 1000, bias True
LeakyReLU(0.2)

FC, 1000, bias True
LeakyReLU(0.2)

FC, 1000, bias True
LeakyReLU(0.2)

FC, 1000, bias True
LeakyReLU(0.2)

FC, 2, bias True

https://vizta-tof.kl.dfki.de/
https://github.com/SteveCruz/icpr2022-autoencoder-syn2real


TABLE S3
MODEL ARCHITECTURE FOR E-AE ON MPI3D. THE EXTRACTOR IS FIXED

DURING TRAINING.

Extractor + Summarizer + Encoder Decoder

Input: 3 x 224 x 224 Input: 10

VGG-11 extractor after 7th Conv layer + ReLU FC, 256, bias True
Avgpool, 2x2, stride 2, padding 0 ReLU

Conv, 4x4, 256, padding 0, stride 1 FC, 1024, bias True
ReLU ReLU

FC, 256, bias True ConvTranspose, 4x4, 64, padding 1, stride 2
ReLU ReLU

FC, 10, bias True ConvTranspose, 4x4, 32, padding 1, stride 2
ReLU

ConvTranspose, 4x4, 32, padding 1, stride 2
ReLU

ConvTranspose, 4x4, 3, padding 1, stride 2
Sigmoid

TABLE S4
MODEL ARCHITECTURE FOR E-AE ON SVIRO, SVIRO-ILLUMINATION

AND TICAM. C IS THE CHANNEL DIMENSION WHICH IS 1 FOR ALL
DATASETS. THE EXTRACTOR IS FIXED DURING TRAINING.

Extractor + Summarizer + Encoder Decoder

Input: C x 224 x 224 Input: 64

VGG-11 extractor after 7th Conv layer + ReLU FC, 256, bias True
Avgpool, 2x2, stride 2, padding 0 ReLU

Conv, 4x4, 256, padding 0, stride 1 FC, 4096, bias True
ReLU ReLU

FC, 256, bias True ConvTranspose, 4x4, 64, padding 1, stride 2
ReLU ReLU

FC, 64, bias True ConvTranspose, 4x4, 32, padding 1, stride 2
ReLU

ConvTranspose, 4x4, 32, padding 1, stride 2
ReLU

ConvTranspose, 4x4, C, padding 1, stride 2
Sigmoid

S3. ADDITIONAL RESULTS

(a) AE (b) β-VAE

(c) FactorVAE (d) E-AE

Fig. S2. t-SNE projection of the 10 dimensional latent space representation
of the toy training (blue circle) together with the real (orange cross) images.
Autoencoder (AE), β Variational Autoencoder (β-VAE), FactorVAE and
Extractor Autoencoder (E-AE). When trained on toy images, our extractor
approach performs still best although the synthetic-real distributions are not
as overlapped as if trained on realistic images.

A
E

β
-A

E
F-

VA
E

E
-A

E

(a) Reconstruction of training data when being trained on realistic data.

A
E

β
-A

E
F-

VA
E

E
-A

E

(b) Reconstruction of training data when being trained on toy data.

Fig. S3. Reconstruction of realistic and toy training data for different autoen-
coders: Autoencoder (AE), β Variational Autoencoder (β-VAE), FactorVAE
(F-VAE) and Extractor Autoencoder (E-AE).



TABLE S5
WE REPORT THE SSIM AND LPIPS [4] NORM BETWEEN THE RECONSTRUCTIONS OF THE REAL IMAGES (UNKNOWN) AND THE CORRESPONDING
SYNTHETIC TRAINING IMAGES (REALISTIC OR TOY). WE REPORT THE MEAN OF THE NORMS ACROSS THE ENTIRE REDUCED DATASET: FOR SSIM

LARGER ↑ AND FOR LPIPS SMALLER ↓ IS BETTER. E-AE PERFORMS BEST. SOME MODELS USED SSIM, OTHERS BCE DURING TRAINING.

Trained on Model Variant SSIM ↑ LPIPS ↓

Toy AE BCE 0.559 0.412
Toy AE SSIM 0.558 0.347
Toy E-AE (ours) BCE 0.896 0.095
Toy E-AE (ours) SSIM 0.899 0.103
Toy VAE BCE 0.497 0.338
Toy β-VAE BCE, β = 4 0.527 0.311
Toy β-VAE BCE, β = 8 0.709 0.258
Toy FactorVAE BCE, γ = 10 0.660 0.262
Toy FactorVAE BCE, γ = 30 0.710 0.344
Toy FactorVAE BCE, γ = 50 0.712 0.221

Realistic AE BCE 0.841 0.211
Realistic AE SSIM 0.832 0.195
Realistic E-AE (ours) BCE 0.917 0.071
Realistic E-AE (ours) SSIM 0.921 0.081
Realistic VAE BCE 0.740 0.197
Realistic β-VAE BCE, β = 4 0.810 0.176
Realistic β-VAE BCE, β = 8 0.794 0.189
Realistic FactorVAE BCE, γ = 10 0.880 0.151
Realistic FactorVAE BCE, γ = 30 0.862 0.161
Realistic FactorVAE BCE, γ = 50 0.779 0.164

TABLE S6
FOR EACH EXPERIMENT, THE BEST PERFORMANCE (IN PERCENTAGE) ON REAL VEHICLE INTERIOR IMAGES (TICAM) ACROSS ALL EPOCHS IS TAKEN
AND THEN THE MEAN AND MAXIMUM OF THOSE VALUES ACROSS ALL 10 RUNS IS REPORTED. FOR THE SAME BACKBONE MODEL EXTRACTOR, OUR

APPROACH OUTPERFORMS THE VANILLA CLASSIFICATION MODELS SIGNIFICANTLY. THE MODEL WEIGHTS ACHIEVING THE MAXIMUM PERFORMANCE
PER RUN ARE ALSO EVALUATED ON SVIRO WHERE THEY PERFORM BETTER AS WELL.

Dataset TICaM SVIRO

Dataset size 13356 11959

Model Variant Mean Max Mean Max

VGG-11 Scratch 58.5± 4.0 64.6 65.6± 5.4 72.7
Resnet-50 Scratch 53.3± 3.5 60.4 56.4± 2.6 59.3
Densenet-121 Scratch 56.3± 5.5 62.1 68.8± 2.4 74.9

VGG-11 Pre-trained 75.5± 1.5 78.0 78.7± 2.9 84.0
Resnet-50 Pre-trained 78.1± 1.7 80.4 83.5± 2.7 88.1
Densenet-121 Pre-trained 72.2± 4.2 77.4 85.0± 2.3 88.0

VGG-11 E-TAE 76.7± 2.3 81.5 78.6± 2.6 82.3
Resnet-50 E-TAE 83.8± 1.3 86.0 85.8± 2.4 89.1
Densenet-121 E-TAE 78.5± 2.4 81.8 86.7± 1.3 88.2

VGG-11 I-E-TAE 79.7± 2.1 82.2 80.9± 4.0 85.6
Resnet-50 I-E-TAE 83.5± 1.3 85.6 89.2± 1.0 90.3
Densenet-121 I-E-TAE 77.2± 1.7 79.3 90.4± 1.3 92.1

VGG-11 II-E-TAE 81.0± 0.6 82.0 79.1± 3.9 84.8
Resnet-50 II-E-TAE 83.7± 0.5 84.5 93.0± 0.8 94.1
Densenet-121 II-E-TAE 79.3± 1.3 81.5 89.9± 1.8 92.3



(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

Fig. S4. Reconstruction results of unseen real data (a) from the TICaM
dataset: (b) E-AE Trained on Tesla SVIRO, (c) E-AE Trained on Kodiaq
SVIRO-Illumination , (d) I-E-AE Trained on Kodiaq SVIRO-Illumination ,
(e) E-AE, (f) I-E-AE, (g) II-E-AE, (h) E-TAE, (i) I-E-TAE, (j) II-E-TAE
and (k) Nearest neighbour of (j). Examples (e)-(k) are all trained on our new
dataset. A red (wrong) or green (correct) box highlights whether the semantics
are preserved by the reconstruction.

TABLE S7
DIFFERENT MODEL ARCHITECTURE VARIATIONS TRAINED ON MNIST.
THEN DIFFERENT CLASSIFIERS WERE TRAINED ON THE LATENT SPACE
REPRESENTATION OF THE TRAINING DATA AND EVALUATED ON REAL

IMAGES OF DIGITS. MODELS WERE TRAINED FOR 20 EPOCHS USING A
LATENT DIMENSION OF 64 AND MSE RECONSTRUCTION LOSS. SEE FIG.
S6 FOR THE CORRESPONDING RECONSTRUCTION RESULTS AND INPUT

IMAGES.

Model KNN RForest SVM

AE 15.7 12.5 11.6
TAE 11.1 11.6 8.4

II-AE 27.8 20.2 23.6
II-TAE 21.8 17.9 23.9

E-AE 27.3 23.1 26.5
E-TAE 26.1 19.1 23.3

II-E-AE 65.0 61.9 65.6
II-E-TAE 64.1 63.7 63.7

(a) Resnet-50

(b) VGG-11

(c) Densenet-121

Fig. S5. Comparison of the training performance distribution for each epoch
over 250 epochs. II-E-TAE is compared against training the corresponding
extractor from scratch or fine-tuning the layers after the features which are
used by the extractor in our autoencoder approach.

In
pu

t
A

E
E

-A
E

TA
E

E
-T

A
E

II
-A

E
II

-T
A

E
II

-E
-A

E
II

-E
-T

A
E

Fig. S6. Reconstruction of real input images of digits by models trained on
MNIST. Similar to the vehicle interior, the II-PIRL loss provides the best class
preserving reconstructions. The latter is supported by the quantiative results
in Table S7.



REFERENCES

[1] P. Bergmann, S. Löwe, M. Fauser, D. Sattlegger, and C. Steger, “Improv-
ing unsupervised defect segmentation by applying structural similarity to
autoencoders,” arXiv preprint arXiv:1807.02011, 2018.

[2] F. Gongfan, “Pytorch ms-ssim,” https://github.com/VainF/
pytorch-msssim, 2019.

[3] V. Balntas, E. Riba, D. Ponsa, and K. Mikolajczyk, “Learning local fea-
ture descriptors with triplets and shallow convolutional neural networks.”
in British Machine Vision Conference (BMVC), 2016.

[4] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

https://github.com/VainF/pytorch-msssim
https://github.com/VainF/pytorch-msssim

	Dataset details
	MPI3D
	SVIRO
	SVIRO-Illumination
	Our newly released dataset
	TICaM

	Training details
	Model details

	Additional results
	References

