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Abstract— Common domain shift problem formulations con-
sider the integration of multiple source domains, or the tar-
get domain during training. Regarding the generalization of
machine learning models between different car interiors, we
formulate the criterion of training in a single vehicle: without
access to the target distribution of the vehicle the model would
be deployed to, neither with access to multiple vehicles during
training. We performed an investigation on the SVIRO dataset
for occupant classification on the rear bench and propose an
autoencoder based approach to improve the transferability.
The autoencoder is on par with commonly used classification
models when trained from scratch and sometimes out-performs
models pre-trained on a large amount of data. Moreover, the
autoencoder can transform images from unknown vehicles into
the vehicle it was trained on. These results are corroborated by
an evaluation on real infrared images from two vehicle interiors.

I. INTRODUCTION

The deployment of deep learning based approaches in the
automotive industry needs to be corroborated by robustness
and generalization guarantees, especially when the models’
predictions would be used for safety critical applications,
e.g. the adjustment of the strength of the air-bag deployment
in case of an accident [1], [2]. In this work, we focus on
camera-based occupant classification on the rear bench. We
will highlight some of the unique challenges for the vehi-
cle interior regarding the robustness and generalization of
machine learning models. Machine learning models trained
in a single vehicle interior take non-relevant characteristics
of the background into account for their decision taking [3],
because the training data contains similar backgrounds for all
images. Consequently, the performance drops drastically if
models trained in a single car interior are used in a different
vehicle. Repeating the data recording and annotation gener-
ation process for each new car model and automotive man-
ufacturer implies a time-consuming and costly development
pipeline. Alternative sensor data (e.g. depth maps computed
by time-of-flight sensors, RADAR [4]) and the inclusion
of data from different vehicles (e.g. domain generalization)
would improve the transferability. However, improving the
theoretical foundations of deep learning models is paramount
for safety critical applications. As illustrated in Fig. 1, we
formulate the challenge of training in a single vehicle interior
and generalizing to unseen cars without using images from
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Fig. 1: Synthetic images from SVIRO [8]. Left: infant seat
with a baby, Right: child seat with a child. Training on
images from a single vehicle interior (a): How can we
improve robustness on same class instances, but to a new
vehicle (b)? Can the model generalize to new class instances
in the vehicle it was trained on (c)? How can we improve
generalization to new class instances in a new vehicle (d)?

the target distribution or from multiple vehicles. Even more
difficult, the models’ generalization to new objects in new
environments should be examined as well. This can be
considered as an extreme form of domain adaptation [5] and
is related to (generalized) zero-shot learning [6], [7]. We will
adopt the SVIRO dataset [8] to investigate the generalization
between different vehicle interiors. Our key contributions can
be summarized as follows:

a We demonstrate that transfer learning is not sufficient
to ensure consistency between different vehicles for the
aforementioned challenging training conditions,

a We show that autoencoders with a classifier in the latent
space achieve accuracies on par with classification mod-
els. Moreover, the autoencoders can transform images
from unknown vehicles to the one they were trained on,

a We compare different reconstruction cost functions in
autoencoders which lead to different behaviours for
classification and reconstruction transferability,

a We corroborate the inter-vehicle transformation by
showing that it works on real infrared images as well,
even when trained on synthetic images.

The resulting advantages are two-fold: we need less data to
achieve similar performances, which is important when pre-
trained models cannot be used due to licensing constraints.
Future work can exploit progress in disentanglement and the
inclusion of prior knowledge in the latent space of autoen-
coders to further improve the robustness and transferability.



II. RELATED WORK

Datasets: Publicly available realistic datasets for the vehicle
interior are scarce. Some exceptions are the recently
released AutoPOSE [9] and DriveAHead [10] datasets for
driver head orientation and position, Drive&Act [11] a
multi modal benchmark for action recognition in automated
vehicles and TICaM [12] for activity recognition and person
detection. However, these datasets all have in common
that they provide images for a single vehicle interior such
that the transferability between vehicles cannot be tested
reliably. Although SVIRO [8] is a synthetic dataset, it was
designed specifically to test the transferability between
different vehicles across multiple tasks. The applicability
to real infrared [8] and depth images [13] was shown. In
Section IV-H, we will present that insights on SVIRO are
transferable to real infrared images. Training on SVIRO
and applying the resulting model to real images is possible.
Moreover, recent studies have shown the importance of
synthetic data for the automotive industry [14], [15], [16].

Domain shift: Methods from domain adaptation [5], [17],
[18] are commonly used to reduce the gap between the target
domain (the vehicle in which we want to use our model) and
source domain (the vehicle we trained on). However, these
methods usually require (often even labelled) images from
the target distribution to work well. Zero-shot learning (ZSL)
[6], [19], and particularly generalized zero-shot learning
(GZSL) [7], [6], [20], are the most extreme cases of domain
adaptation as they do not require labels for new test objects.
Both setups consider the generalization to new classes,
but require some additional type of information, e.g. word
embeddings [19] or semantic descriptions [20]. However, we
focus on the evaluation of seen class instances in unknown
environments and unknown class instances in known and
unknown environments. Nevertheless, our problem setup is
closest to (G)ZSL and they share some characteristics such
that advances for the latter might be useful as well. The main
difference stems from the following constraint: the adaptation
of trained models to new class instances and environments
should be avoided. For example, models should be robust
against new child seats appearing on the market after the
model was deployed, and models should not need to be
adapted for each vehicle interior variation.

Alternatively, it would be possible to transform images
from an unknown vehicle back to the known vehicle,
e.g. by aligning both domains [21] or by using style
transfer techniques [22], [23]. However, those techniques
need images from the target distribution as well. Similar
to eyeglass removal achieved by generative adversarial
networks (GAN) [24], we could use a GAN to change the
vehicle background, but this would need images from the
target domain or image-pairs of what we would expect
to encounter. Domain generalization considers methods
to generalize to new domains without accessing images
from the unknown domain during training [25], [26].
Nevertheless, these techniques use images from several
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Fig. 2: Image (a) from the SVIRO dataset is augmented
using different random transformations to form image (b).
The latter is used as input to the autoencoder, which should
learn to output image (c), i.e. transform (b) back to (a).

domains during training to learn generalizing well to
unknown domains and the aforementioned methods often
combine several datasets. To the best of our knowledge,
SVIRO is the first dataset which allows to investigate the
generalization on the same tasks to a new, but similar,
vehicle interior. Hence, common domain shift problem
formulations and proposed solutions could not consider
the challenge of generalizing to an unknown domain when
learning from a single domain for solving the same task.

Representation learning: Recent advances have shown that
disentanglement in the latent space of autoencoders can
lead to improved performance on visual downstream tasks
[27]. It is believed that meaningful scene decomposition
[28], [29] will improve the transferability for many tasks,
however, these methods still do not work well for scenes
of higher visual complexity and are currently limited to toy
datasets like CLEVR [30], Objects Room [28] or MPI3D
[31]. We provide a baseline for the transferability between
vehicle interiors with our proposed autoencoder approach.
Hence, future work can analyse the effect of disentanglement
and scene decomposition with respect to the transferability
on a task with higher visual complexity than commonly
used datasets. These advances can be compared against self-
supervised learning methods [32], [33], for example, with
respect to resulting differences in the latent space.

III. METHOD

Our method is based on exploiting the disadvantage of
our problem formulation to our advantage. As all the images
from a single vehicle interior contain similar backgrounds, an
autoencoder should be able to learn to reconstruct the vehicle
interior robustly. If we augment the training images, then
the autoencoder should easily learn to clean the augmented
images, because the clean backgrounds do not undergo a high
variability. Example images are shown in Fig. 2: we augment
the training images (a) to obtain a modified version (b) by
changing colours and the perspective and adding random
noise. The autoencoder then reconstructs (c), which should
be the initial clean version (a). Similar approaches have
been applied to de-noising and in-painting [34], [35]. The
autoencoder needs to map different backgrounds and per-
spectives to similar latent space representations to reconstruct
the background correctly. Hence, a classifier using the latent
space vector as input should learn to neglect background
information more easily than using the input image.



A. Architecture Details

Our autoencoder network architecture is inspired by Seg-
Net [36]: we keep track of the indices from the max-pooling
in the encoder part and use them for the max-unpooling in the
decoder part. The network architecture is illustrated in Fig.
3: All convolutional layers use 3x3 kernels with a padding of
1 and a stride of 1. Each convolutional layer is followed by
batch normalization and a ReLU activation function. After
each block of two convolutional layers we apply a max-
pooling (or max-unpooling) with a kernel size of 2x2 and a
stride of 2 and we double (or halve) the amount of filters.
The four down-sampling blocks are followed by two fully
connected layers (+ intermediate ReLU) where the last one
generates the latent vector. The decoder is exactly the reverse
of the encoder network with a final sigmoid function. The
latent vector is used as input for the decoder network and
the classification network. The latter consists of two fully
connected layers (+ intermediate ReLU) where the last one
outputs three predictions: one for each seat position (left,
middle and right). Hence, we need to apply three independent
softmax functions to the output of the last layer. This way,
we implicitly force the network to learn to use each classifier
for a different seat position. Moreover, we can use the whole
image as input compared to using an individual image for
each seat position [8]. Thus, passengers leaning over to the
neighbouring seat can be easier classified. Additionally, the
middle prediction can be dropped in case of a two-seated
car. We will also report results for the same architecture with
nearest neighbour up-sampling instead of max-unpooling.

We define the cost function L�x, x̂; θ, φ, ω� as a combina-
tion of the reconstruction loss for the whole image and the
classification loss for each seat position:

L�x, x̂; θ, φ, ω� � r �x, hθ�gφ�x̂����

γ
2

=
i�0

pi�x� log �cωi
�gφ�x̂��� ,

(1)

where gφ is the encoder, hθ the decoder, cωi
the classifier for

seat i where i corresponds to the left, right and middle seat
position, pi�x� is the true probability distribution for x for
seat i, and γ is a hyperparameter to weight the classification
loss. The reconstruction loss r��, �� is computed between
the clean input image x (Fig. 2.a) and the reconstruction
(Fig. 2.c) of the augmented image x̂ (Fig. 2.b). In this work,
we consider for the reconstruction loss the mean squared
error (MSE): r�a, b� � ½a � b½2

2, the structural similarity
index (SSIM) [37]: r�a, b� � 1 � SSIM�a, b�, the multi-
scale structural similarity index (MS-SSIM) [38]: r�a, b� �
1 � MSSSIM�a, b� and the perceptual (PC) loss [39]: sum
of MSE errors after each pre-trained VGG-16 block.

IV. EXPERIMENTS

We will present a comparison between a representative
selection of classification models. We start by establishing a
baseline regarding the transferability between different vehi-
cle interiors and their generalization to new class instances.

Fig. 3: Our model consists of a simple encoder-decoder
network with a classifier in the latent space. We use four
down-sample and four up-sample blocks: each consisting of
two convolutional layers. The number of filters and features
are specified for each layer. Max-unpooling (blue) uses the
indices from the down-sampling counter-part (red). We use
three independent softmax layers for the classification.

These results will be compared against our autoencoder ap-
proach for which we will conduct additional investigations to
highlight some of the advantages compared to classification
models: the autoencoder is able to transform sceneries from
unknown vehicles back to the vehicle it was trained on.
The latter is corroborated by a qualitative and quantitative
evaluation on real infrared images to show the applicability
to a real application, even when trained on synthetic data.

A. Training Data

Our experiments were conducted on SVIRO [8], a syn-
thetic dataset for sceneries in the passenger compartment of
ten different vehicles. We limited our training on the eight
vehicles with three seat positions, but the evaluation will
be performed on all ten vehicles such that the models also
need to generalize to the two-seated cars. For the later, the
model output for the middle seat will be discarded. Each
vehicle consists of a train (2500 images) and a test (500
images) split: SVIRO uses different objects (but identical
ones across the vehicles) for the train and test split to evaluate
the generalization to unknown vehicle interiors either using
known or unknown class instances. When referring in the



following to training images from unknown vehicles, those
images had not been used during training, but they contain
class instances of seen objects. SVIRO contains seven dif-
ferent classes: empty seat, occupied and empty infant seat,
occupied and empty child seat, adult passenger and everyday
object (e.g. bags). We conducted our experiments on the
grayscale images (simplified infrared imitations) which helps
to become less susceptible to changing illumination [40].

B. Training Details

All models were trained using the following data aug-
mentations: we applied a random horizontal flip (labels
are flipped as well) and randomly used transformations
from the imgaug 0.4.0 library [41] (PerspectiveTransform,
Emboss, Invert, SigmoidContrast, AllChannelsCLAHE and
AdditiveLaplaceNoise). The perspective transformation has
the largest impact on improving the generalization between
the vehicles. Images were center-cropped to 640x640 and
then resized to 128x128 for the autoencoder and 224x224 for
the classification models. For the latter, the grayscale images
were repeated across the channel dimension to form a 3-
channel image. The training dataset was partitioned randomly
according to a 80:20 split for training and evaluation (the
evaluation data was augmented for better transferability
assessment), where the latter was used to perform early stop-
ping with respect to classification accuracy. The models were
trained for 1000 epochs with a batch size of 64. We used Py-
Torch 1.4.0 and TorchVision 0.5.0 for all our experiments and
PyTorch MS-SSIM [42] for some reconstruction losses. The
random seeds of all libraries were fixed for all experiments.
Even though the classes are imbalanced [8], we did not
consider a weighted loss or imbalanced sampling, because
some models are capable of achieving a good performance
on the training objects in unknown vehicles. Since SVIRO
contains seven classes, all the classification networks output
21 values which corresponds to three predictions: one for
each seat position (left, middle and right). The classification
loss is computed by adding up three cross-entropy losses
(one for each seat position) as formulated in (1).

C. Representative classification models

We trained six classification models (DenseNet-121, Mo-
bileNet V2, ResNet-18, ResNet-50, SqueezeNet V1.1 and
VGG-16) as implemented and pre-trained in TorchVision
0.5.0 from scratch or fine-tuned all layers. We replaced
the last fully-connected layer with an output similar to the
autoencoder classification network explained in Section III.
Fine-tuning the classification layer or last-block only behaves
similarly as shown in the baseline evaluation [8]. We used
the Adam optimizer with a learning rate of 0.0001. While
we used weight decay for the autoencoder training, we
decided to not use it for the classification models because
of a conducted hyperparameter search. The training images
were augmented using the same transformations as for the
autoencoder approach. For each classification model and
each training method (scratch and fine-tuned), we trained
an individual model on the training images of each vehicle

and then evaluated it on the training and test images of all
the other nine unknown vehicles. The results are summarized
in Table II. A detailed performance comparison for models
trained from scratch on the Tesla vehicle and evaluated on
the training images of all unknown vehicles is reported in
Table I. The models’ performances vary a lot across the
different vehicle interiors: higher accuracy performance on
ImageNet does not guarantee a better inter-vehicle transfer-
ability (e.g. DenseNet compared to MobileNet). Moreover, a
performance evaluation on one vehicle does not necessarily
transfer to a similar performance on other vehicles (e.g.
ResNet-50 vs. MobileNet on the A-Class compared to most
other vehicles). Hence, it is difficult to assess in advance
how well a model might perform in a new vehicle, even
if only class instances seen during training are considered.
Moreover, evaluating a model’s performance on a subset
of vehicles does not guarantee a similar behaviour in a
different car. Table I provides a comparison between training
from scratch and fine-tuning classification models against the
autoencoder approach. The fine-tuned models achieve overall
a higher accuracy, however, the performance still fluctuates
between different vehicle interiors. The performance on the
Tiguan is worse compared to all other vehicles, because of
the unique pattern and color difference in the texture of the
rear seats: e.g. see last row of Fig. 6.

D. Proposed autoencoder classification

We will present results on the autoencoder architecture
introduced in Section III and compare them against the
models obtained in Section IV-C. All models use a latent
space of dimension 64, the AdamW optimizer with a learning
rate of 0.0001 and a weight decay of 0.01. We used γ � 75 in
(1) to weight the classification loss with respect to the MSE
reconstruction loss according to a conducted hyperparameter
search. All other reconstruction losses used γ � 1.

We trained an individual autoencoder on each vehicle
and for each reconstruction cost function (MSE, SSIM,
MS-SSIM and perceptual loss). If not stated otherwise,
we used max-unpooling for the up-sampling. The differ-
ent autoencoder models are compared in Table I against
the results of the classification models obtained in Section
IV-C: the models were trained on the Tesla vehicle and
compared on the training images of the nine vehicles not
seen during training. Different reconstruction losses influence
the transferability of the reconstruction quality, but also the
classification accuracy. The MS-SSIM cost function yielded
the best accuracy when trained on the augmented training
images while the perceptual loss generated the best recon-
struction quality: see Section IV-G for a visual comparison.
Comparing the mean performance across all vehicles, all the
different autoencoder models outperform the classification
models trained from scratch and sometimes even outperforms
the fine-tuned models pre-trained on a large amount of data.
Autoencoders with nearest neighbour up-sampling perform
slightly better with respect to accuracy, but cannot compete
with the domain transformation presented in Section IV-G.



TABLE I: Comparison of the accuracies (in percentage) across different vehicles. The classification models were trained
from scratch (S) or fine-tuned (F) and the autoencoders with (AE) and without (AEW) max-unpooling were trained from
scratch only with different reconstruction losses. The models were trained on the augmented training images of the Tesla
vehicle and tested on the training images of all vehicles not seen during training.

VGG-16 DenseNet-121 MobileNet ResNet-50 ResNet-18 SqueezeNet SSIM MS-SSIM PC MSE
Tested on F S F S F S F S F S F S AE AEW AE AEW AE AEW AE AEW
A-Class 93.6 73.0 81.3 65.1 80.1 82.6 76.0 75.8 82.1 61.2 76.7 69.0 78.4 81.6 84.0 73.9 80.8 81.1 78.8 81.7
Escape 93.6 88.8 90.2 86.2 86.1 76.2 89.0 81.8 88.4 78.5 84.8 72.8 85.5 86.0 86.1 82.7 86.8 80.7 86.4 81.3
Hilux 92.5 69.9 91.4 63.7 93.3 71.8 84.8 75.8 79.0 70.1 69.2 56.6 82.5 85.9 87.9 82.1 82.3 83.9 82.0 78.1
Lexus 95.3 87.2 93.4 71.1 94.9 80.4 91.1 72.8 89.3 70.1 76.8 58.4 76.0 85.0 86.8 84.1 87.0 82.5 80.6 83.3
Tiguan 78.8 59.4 83.2 69.5 81.4 65.4 79.2 63.3 77.7 63.0 85.5 69.8 70.9 65.7 65.7 58.3 63.1 61.1 60.0 61.1
Tucson 98.6 89.7 86.4 84.8 94.5 77.7 93.5 86.0 86.0 84.2 86.5 75.6 93.5 92.0 94.7 89.8 92.9 91.3 92.5 93.0

X5 96.5 83.4 96.7 84.1 98.0 78.1 98.0 89.8 98.3 85.6 93.6 81.6 90.2 88.7 89.6 88.5 84.5 83.4 84.6 81.8
i3 99.1 80.8 99.4 91.0 98.6 77.6 96.8 89.3 98.6 94.4 95.2 80.1 87.2 90.0 93.7 88.4 94.2 90.3 93.9 88.8

Zoe 98.2 72.9 77.4 70.2 96.2 80.4 83.5 86.6 77.1 71.2 81.8 62.4 87.1 91.5 91.0 84.4 90.8 89.6 92.4 91.6

Mean 94.0 78.3 88.8 76.2 91.5 76.7 88.0 80.1 86.3 75.4 83.3 69.6 83.5 85.1 86.6 81.4 84.7 82.7 83.5 82.3
Std 5.8 9.6 6.9 9.7 6.7 4.9 7.2 8.4 7.7 10.4 7.8 8.5 6.8 7.6 8.1 9.3 8.8 8.5 9.8 8.9

Fig. 4: We trained an individual MS-SSIM autoencoder on
each of the eight vehicles. The models were evaluated on
the training images of the nine vehicles not seen during
training. Different colors represent the vehicles each model
was trained on. The performances of each model across all
unseen vehicles are connected by lines to ease visualization.

E. SVIRO Benchmark Results

The SVIRO benchmark reports results on the mean test
classification accuracy: a model should be trained in a single
vehicle and the mean accuracy on the test images across all
vehicles not seen during training is taken as the score. Each
of the aforementioned models was trained individually on
each vehicle and then evaluated on the nine unknown vehi-
cles: an overview of the performances is reported in Table
II. We report the mean accuracy on training on the different
vehicles and evaluating on all remaining nine vehicles: Au-
toencoders perform better than training classification models
from scratch, but no method outperforms consistently.

F. Ablation Study

Apart from comparing the autoencoder based approach to
the classification models, we also investigated the method

itself in more details. We trained an individual MS-SSIM
autoencoder on each of the eight vehicles. In Fig. 4, the
resulting models are compared individually on the training
images of each of the nine vehicles not seen during training.
Depending on which vehicle the models were trained on,
the trend in their overall performance can be quite different
and fluctuate a lot: some vehicles are more advantageous
while others lead to worse results. In Fig. 5, we compare the
confusion matrices from two unknown vehicles with similar
mean accuracy by the model trained on the Tesla vehicle: in
the Escape the model performs worse on adults and everyday
objects and it misclassified many samples as empty while in
the Hilux more infant seats are misclassified as unoccupied.
Hence, a same model can behave differently (even with
similar mean accuracy) on different vehicles such that no
guarantees can be provided without additional precautions.

G. Vehicle Domain Transformation

An additional advantage of the autoencoder approach is
the possibility to exploit the disadvantage of our training
environment: since all images are from the same vehicle, the
sceneries will not undergo many changes (besides the objects
on the seat). Hence, by augmenting the training images and
using the autoencoder as a de-noiser, the model learns to
transform images back to the original environment. This
leads to useful properties when images from an unknown
vehicle are used as input. In Fig. 6 we compare input
images from six unknown vehicles against their transformed
versions computed by autoencoders from Table I trained
with different cost functions on images from the Tesla.
The autoencoders are able to transform the input images
to a scenery in the vehicle the models were trained on
by replacing the rear bench and adapting the perspective
accordingly. The different cost functions have an influence
on the transferability and quality of the transformations.
Overall, SSIM and the perceptual loss perform best. The
reconstruction of the objects is not perfect, especially humans



TABLE II: Overview of the SVIRO leaderboard accuracies (in percentage). The models were trained on different vehicles
and then evaluated on the test images of all unknown vehicles. Using the augmented images, the autoencoders with (AE)
and without (AEW) max-unpooling and the classification models were trained from scratch (S) or fine-tuned (F).

VGG-16 DenseNet-121 MobileNet ResNet-50 ResNet-18 SqueezeNet SSIM MS-SSIM PC MSE
Trained on F S F S F S F S F S F S AE AEW AE AEW AE AEW AE AEW

A-Class 61.3 51.9 59.2 42.4 51.8 46.5 49.1 48.3 56.6 47.6 55.0 52.4 54.8 49.9 49.8 51.6 52.5 52.3 45.3 55.0
Escape 62.6 49.3 58.1 49.4 47.9 50.9 49.7 47.1 52.3 49.4 51.1 48.8 52.0 53.5 47.2 53.7 56.0 53.1 49.5 52.9
Hilux 54.1 49.7 60.9 47.6 58.3 45.1 52.5 41.3 56.2 45.6 54.5 48.4 49.1 51.5 47.8 48.5 45.2 51.2 51.1 49.9
Lexus 58.1 60.6 67.4 48.2 57.0 53.6 49.1 48.5 59.5 52.8 56.4 51.2 58.2 61.6 58.4 57.6 61.2 59.7 59.0 60.6
Tesla 61.8 50.6 64.5 47.3 60.6 49.4 57.4 51.9 57.2 47.8 50.2 46.1 55.9 55.7 58.0 55.5 54.3 58.3 58.2 58.2

Tiguan 48.5 44.6 49.2 35.5 45.5 44.7 50.0 35.7 51.2 40.9 53.4 43.4 42.1 41.9 41.2 43.2 39.1 44.8 46.8 46.2
Tucson 66.3 45.9 68.4 46.6 53.0 47.9 60.0 44.7 58.7 49.9 51.4 50.6 50.4 53.6 53.8 52.1 46.1 55.1 44.5 47.6

X5 58.3 52.0 52.0 40.0 51.2 47.4 49.2 43.1 42.4 46.8 45.7 39.2 53.3 59.1 50.0 52.0 52.9 53.9 55.0 52.9

Mean 58.9 50.6 60.0 44.6 53.2 48.2 52.1 45.1 54.3 47.6 52.2 47.5 52.0 53.3 50.8 51.8 50.9 53.6 51.2 52.9
Std 5.2 4.5 6.4 4.5 4.9 2.8 4.0 4.7 5.2 3.3 3.2 4.1 4.6 5.6 5.4 4.1 6.6 4.3 5.3 4.7

Fig. 5: Confusion matrices for the MS-SSIM autoencoder
from Fig. 4 trained on the Tesla. Evaluation was done on
the training images from the Escape (left) and Hilux (right).
Although the model achieves a similar overall accuracy on
both vehicles, the mis-classifications are different. Abbrevi-
ations: CS = child seat, IS = infant seat and E-* = empty.

often appear blurrier, probably because of the higher visual
complexity and variability due to different poses. Notice that
it is much harder for the image from the Tiguan, because of
the unique texture pattern. The reconstructions for the objects
need further investigations regarding the delivery of valid and
robust features that can be used from a classifier. In Fig. 7
we show several examples of the reconstruction of the same
sceneries by autoencoders trained on different vehicles using
the perceptual loss. For nearest neighbour up-sampling the
models have more trouble for the reconstruction in unseen
vehicles, because all the information goes through the latent
space in contrast to the indices when max-unpooling is used.

H. Applicability to Real Infrared Images

We tested the transferability of the vehicle domain trans-
formation presented in Section IV-G to real images. To
this end, we recorded 3500 sceneries by an active infrared
camera system in two vehicle interiors: BMW X5 and VW
Sharan. We used the same classes as for the synthetic
dataset and individual autoencoders were then trained on

A-Class MSE SSIM MS-SSIM Perceptual

Escape

Hilux

i3

Lexus

Tiguan

Fig. 6: Autoencoders were trained on the Tesla using the de-
noising approach. The first column contains input training
images from unknown vehicles. The other columns show
the corresponding transformations by the autoencoder for
different cost functions: MSE, SSIM, MS-SSIM and PC-loss.

both real vehicles and the synthetic Tesla images. We used
the same architecture as presented in Section III and the
perceptual loss for training. In Fig. 8, we report results on
the autoencoder transformations for images of the vehicle
not used during training. The backgrounds and rear seats
from the Sharan are replaced by the ones from the X5 and
vice versa. Albeit the results are not as detailed as if trained
on real images, the transfer from synthetic to real images is



Input Hilux Lexus Tiguan Tucson

Fig. 7: Reconstruction of the same sceneries (first column)
by autoencoders trained on different vehicles (remaining
columns) using the perceptual loss during training.

possible and the background is replaced by the synthetic one.
Additionally, we trained individual classification models and
autoencoders using several reconstruction cost functions in
order to compare their generalization accuracy. The results
are summarized in Table III and they are similar as for the
synthetic data: our autoencoder approach generalizes better
than classification models trained from scratch. Fine-tuned
classification models usually perform best, but we think that
improvements on the autoencoder will further close the gap
and yield additional helpful properties (e.g. disentanglement).

V. CONCLUSION AND FUTURE WORK

We introduced the challenge of training in a single vehicle
interior and improving generalization to unknown vehicles
and class instances. Our results showed that commonly used
classifiers do not behave reliably across different vehicle in-
teriors and our introduced autoencoder approach outperforms
classification models trained from scratch. This is important
when pre-trained models cannot be used for commercialized
applications due to licensing constraints. Although the appli-
cability to real images has been shown, the generalization to
new class instances needs to be improved and the transfer to
new vehicles needs to be robustified to be applicable to safety
critical applications. None of the investigated classification
and autoencoder methods can guarantee a similar behaviour
on potentially new vehicles, even when multiple vehicles are
available to test the models’ behaviours during the design
process. The models’ predictions should be accompanied
with uncertainty estimations to quantify the model’s self-
assessment with respect to its capability to generalize to
new vehicle interiors or new sceneries. We believe that
improvements on autoencoders will outperform classification
models further for our problem formulation. Additional con-
straints and latent space properties like disentanglement can
be applied and might benefit our problem statement as well.
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Fig. 8: Individual models were trained on real images from
an X5 (first row) and Sharan (fourth row) and on synthetic
images from the Tesla using the perceptual loss. The models
were then applied to real images from the vehicle not used
during training. Recon-R are reconstructions when trained
on real images and Recon-S when trained on synthetic ones.
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